skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shreedhar, Tanya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We quantify, over inter-continental paths, the ageing of TCP packets, throughput and delay for different TCP congestion control algorithms containing a mix of loss-based, delay-based and hybrid congestion control algorithms. In comparing these TCP variants to ACP+, an improvement over ACP, we shed better light on the ability of ACP+ to deliver timely updates over fat pipes and long paths. ACP+ estimates the network conditions on the end-to-end path and adapts the rate of status updates to minimize age. It achieves similar average age as the best (age wise) performing TCP algorithm but at end-to-end throughputs that are two orders of magnitude smaller. We also quantify the significant improvements that ACP+ brings to age control over a shared multiaccess channel. 
    more » « less
  2. Internet-of-Things (IoT) applications have sources sense and send their measurement updates over the Internet to a monitor (control station) for real-time monitoring and actuation. Ideally, these updates would be delivered fresh, at a high rate constrained only by the supported sensing rate. However, such a rate may lead to network congestion related delays in delivery of updates at the monitor that make the freshest update at the monitor unacceptably old for the application. Alternately, at low rates, while updates arrive at the monitor with smaller delays, new updates arrive infrequently. Thus, both low and high rates may lead to an undesirably aged freshest update at the monitor. We propose a novel transport layer protocol, namely the Age Control Protocol (ACP), which enables timely delivery of such updates to monitors over the Internet in a network-transparent manner. ACP adapts the rate of updates from a source such that the average age of updates at the monitor is minimized. We detail the protocol and the proposed control algorithm. We demonstrate its efficacy using extensive simulations and realworld experiments, including wireless access for the sources and an end-to-end connection with multiple hops to the monitor. 
    more » « less